Skip to Content

Dr. David Schilter

Assistant Professor

Office: CHEM 309


Phone: (512) 245-2327

Fax: (512) 245-1436

Educational Background

  • B.S. Chemistry, The University of Sydney (Sydney, Australia), 2004
  • Ph.D. Chemistry, University of Sydney (Sydney, Australia), 2009 


Academic Awards

Lindau Nobel Laureate meeting attendee (2009)

Vice-Chancellor’s Award for Support of the Student Experience (2008)

Henry Bertie and Florence Mabel Gritton Medallist Award (2006)

Agnes Campbell Postgraduate Prize in Organic Chemistry (2005, 2006, 2007)

Australian Postgraduate Award and Supplementary Scholarship (2005)

Graduated with Weighted Average Mark in High Distinction range and University Medal (2004)

Agnes Campbell Honours Prize in Organic Chemistry (2004)

Frank E Dixon Scholarship in Chemistry (2004)

Dean’s List of Excellence in Academic Performance (2001, 2003)

Physics Entry Scholarship (2001)

Dow Corning Prize for Excellence in Chemistry (1999)

Areas of Interest

Organic Chemistry


D. J. Bray, J. K. Clegg, L. F. Lindoy, D. Schilter, “Self-assembled metallo-supramolecular systems incorporating β-diketone motifs as structural elements”, Adv. Inorg. Chem. 2007, 59, 1–37 (DOI: 10.1016/S0898-8838(06)59001-4).

J. K. Clegg, L. F. Lindoy, J. C. McMurtrie, D. Schilter, “Dinuclear bis-β-diketonato ligand derivatives of iron(III) and copper(II) and use of the latter as components for the assembly of extended metallo-supramolecular structures”, Dalton Trans. 2005, 857–864 (DOI: 10.1039/B418870E).

D. J. Bray, J. K. Clegg, L.-L. Liao, L. F. Lindoy, J. C. McMurtrie, D. Schilter, G. Wei, T.-J. Won, “(Ethane-1,2- diamine)dinitratopalladium(II)”, Acta Cryst. 2005, E61, m1940–m1942 (DOI: 10.1107/S1600536805027224).

J. K. Clegg, L. F. Lindoy, J. C. McMurtrie, D. Schilter, “Extended three-dimensional supramolecular architectures derived from trinuclear (bis-β-diketonato)copper(II) metallocycles”, Dalton Trans. 2006, 3114–3121 (DOI: 10.1039/B517274H).

J. K. Clegg, K. Gloe, M. J. Hayter, O. Kataeva, L. F. Lindoy, B. Moubaraki, J. C. McMurtrie, K. S. Murray, D. Schilter, “New discrete and polymeric supramolecular architectures derived from dinuclear (bis-β-diketonato)copper(II) metallocycles”, Dalton Trans. 2006, 3977–3984 (DOI: 10.1039/B606523F).

L. F. Lindoy, J. C. McMurtrie, D. Schilter, “[4-(Dimethylamino)pyridine-кN]bis(pentane-2,4-dionato-к 2O,O')copper(II)”, Acta Cryst. 2006, E62, m1142–m1143 (DOI: 10.1107/S1600536806014528).

D. Schilter, J. K. Clegg, M. M. Harding, L. M. Rendina, “Platinum(II) and palladium(II) metallomacrocycles derived from cationic 4,4'-bipyridinium, 3-aminopyrazinium and 2-aminopyrimidinium ligands”, Dalton Trans. 2010, 239–247 (DOI: 10.1039/b916579g).

D. Schilter, T. Urathamakul, J. L. Beck, M. M. Harding, L. Rendina, “ESI-MS and thermal melting studies of nanoscale platinum(II) metallomacrocycles with DNA”, Dalton Trans. 2010, 11263–11271 (DOI: 10.1039/c0dt00754d).

D. Schilter, M. J. Nilges, M. Chakrabarti, P. A. Lindahl, T. B. Rauchfuss, M. Stein, “Mixed-Valence Nickel–Iron Dithiolate Models of the [NiFe]-Hydrogenase Active Site”, Inorg. Chem. 2012, 51, 2238–2248 (+ front cover, DOI: 10.1021/ic202329y).

D. Schilter, T. B. Rauchfuss, M. Stein, “Connecting [NiFe]-and [FeFe]-Hydrogenase: Mixed-Valence Nickel–Iron Dithiolates with Rotated Structures”, Inorg. Chem. 2012, 51, 8931–8941 (DOI: 10.1021/ic300910r).

D. Schilter, T. B. Rauchfuss, “Nickel–iron dithiolates related to the deactivated [NiFe]-Hydrogenases”, Dalton Trans. 2012, 41, 13324–13329 (DOI: 10.1039/C2DT31895D).

D. Schilter, T. B. Rauchfuss, “And the Winner is…Azadithiolate: an Amine Proton Relay in the [FeFe] Hydrogenases”, Angew. Chem. Int. Ed. 2013, 52, 13518–13520 (DOI: 10.1002/anie.201307132).

M. E. Carroll, J. Chen, D. E. Gray, J. C. Lansing, T. B. Rauchfuss, D. Schilter, P. Volkers, S. R. Wilson, “Ferrous Carbonyl Dithiolates as Precursors to FeFe, FeCo and FeMn Carbonyl Dithiolates”, Organometallics 2014, 33, 858–867 (DOI: 10.1021/om400752a).

E. C. M. Tse, D. Schilter, D. L. Gray, T. B. Rauchfuss, A. A. Gewirth, “Multicopper Models for the Laccase Active Site: Effect of Nuclearity on Electrocatalytic Oxygen Reduction”, Inorg. Chem. 2014, 53, 8505–8516 (DOI: 10.1021/ic501080c).

M. T. Huynh, D. Schilter,† S. Hammes-Schiffer, T. B. Rauchfuss, “Protonation of Nickel–Iron Hydrogenase Models Proceeds After Isomerization at Nickel”, J. Am. Chem. Soc. 2014, 136, 12385–12395 (DOI: 10.1021/ja505783z).

D. Schilter, V. Pelmenschikov, H. Wang, F. Meier, L. B. Gee, Y. Yoda, M. Kaupp, T. B. Rauchfuss, S. P. Cramer, “Synthesis and Vibrational Spectroscopy of 57Fe-Labeled Models of [NiFe] Hydrogenase: First Direct Observation of a Nickel–Iron Interaction”, Chem. Commun. 2014, 50, 13469–13472 (DOI: 10.1039/C4CC04572F).

D. Schilter, “Nickel-iron hydrogenases: high-resolution crystallography resolves the hydride, but not the debate”, ChemBioChem 2015, 16, 1712–1714 (DOI: 10.1002/cbic.201500270).

R. Angamuthu, C.-S. Chen, T. R. Cochrane, D. L. Gray, D. Schilter, O. A. Ulloa, T. B. Rauchfuss, “N-Substituted Derivatives of the Azadithiolate Cofactor from the [FeFe]-Hydrogenases: Stability and Complexation”, Inorg. Chem. 2015, 54, 5717–5724 (DOI: 10.1021/acs.inorgchem.5b00290).

H. Ogata, T. Krämer,† H. Wang,† D. Schilter,† Vladimir Pelmenschikov,† M. van Gastel, F. Neese, T. B. Rauchfuss, L. B. Gee, A. D. Scott, Y. Yoda, Y. Tanaka, W. Lubitz, S. P. Cramer, “Evidence of a Hydride Bridge in [NiFe]-Hydrogenase from Nuclear Resonance Vibrational Spectroscopy and Density Functional Theory”, Nat. Commun. 2015, 6, 7890 (DOI: 10.1038/ncomms8890). Page 8 of 26 | Created 01-14-2021 14:42:39 | David Schilter David Schilter 4

D. Schilter, A. L. Fuller, D. L. Gray, “Nickel–molybdenum and nickel–tungsten dithiolates: hybrid models for hydrogenases and hydrodesulfurization”, Eur. J. Inorg. Chem. 2015, 4638–4642 (DOI: 10.1002/ejic.201500740).

D. Schilter, J. M. Camara, M. T. Huynh, S. Hammes-Schiffer, T. B. Rauchfuss, “Hydrogenase Enzymes and Their Synthetic Models: The Role of Metal Hydrides”, Chem. Rev. 2016, 116, 8693–8749 (+ front cover, DOI: 10.1021/acs.chemrev.6b00180).

J. P. Moerdyk, D. Schilter, C. W. Bielawski, “N,N'-Diamidocarbenes: Isolable Divalent Carbons with Bona Fide Carbene Reactivity”, Acc. Chem. Res. 2016, 49, 1458–1468 (DOI: 10.1021/acs.accounts.6b00080).

X. Zhang, Y. Huang, S. Chen, N. Y. Kim, W. Kim, D. Schilter, M. Biswal, B. Li, Z. Lee, S. Ryu, C. W. Bielawski, W. S. Bacsa, R. S. Ruoff, “Birch-type hydrogenation of few-layer graphenes: products and mechanistic implications”, J. Am. Chem. Soc. 2016, 138, 14980–14986 (DOI: 10.1021/jacs.6b08625).

D. Schilter, C. W. Bielawski, “Synthesis of a 2,2-Dichloroimidazolidine-4,5-dione and its Application in Chlorodehydroxylation”, Org. Synth. 2016, 93, 413–421 (DOI: 10.15227/orgsyn.093.0413).

D. Schilter, D. L. Gray, A. L. Fuller, T. B. Rauchfuss, “Nickel-iron hydrogenase active site models with redox-active ligands”, Aust. J. Chem. 2017, 70, 505–515 (DOI: 10.1071/CH16614). 

M. Biswal, X. Zhang,† D. Schilter, T. K. Lee, D. Y. Hwang, M. Saxena, S. H. Lee, S. Chen, S. K. Kwak, C. W. Bielawski, W. S. Bacsa, R. S. Ruoff, “Sodide and Organic Halides Effect Covalent Functionalization of Single and Bilayer Graphene”, J. Am. Chem. Soc. 2017, 139, 4202–4210 (DOI: 10.1021/jacs.7b00932).

D. Schilter, T. B. Rauchfuss, “A Nickel–Iron Thiolate and its Hydride”, Inorg. Synth. 2018, 37, 166–170 (ISBN: 978-1-119-47773- 0).

Y. Aoki et al. “Physical methods for mechanistic understanding: general discussion” Faraday Discuss. 2019, 220, 144–178 (DOI: 10.1039/C9FD90070E).